
International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Instruction Set Architecture of a MIPS based 16-bit
RISC Processor

Nirmal Haldikar, Sooraj Sekhar

Abstract— Microcontrollers and microprocessors are finding their way into almost every field in today’s world, incorporating an element of
smartness into conventional devices. Energy efficient, space efficient and optimized microcontrollers are the need of the day. Our paper
proposes a new Instruction Set that is a subset of the MIPS architecture. It derives the advantages of MIPS like simplicity and speed.
Besides, since it is a smartly optimized subset of MIPS, it is a smaller version consisting of the most commonly required instructions.

Index Terms— ISA, MIPS, Processor design, RISC, Operand, Opcode, Pipeline.

—————————— ——————————

1 INTRODUCTION
IPS is a reduced instructions set computer (RISC) ar-
chitecture. It is one of the first RISC Instruction set ar-
chitectures. MIPS is an acronym for “Microprocessor

without interlocked pipeline stages”. A team led by John
Hennessey at Stanford University developed it. MIPS imple-
mentations are primarily used in embedded systems such as
Windows CE devices, routers, residential gateways, and video
game consoles such as the Sony PlayStation 2 and PlayStation
Portable. Until late 2006, they were also used in many of SGI’s
computer products. Digital Equipment Corporation, NEC,
Pyramid Technology, Siemens Nixdorf, Tandem Computers
and others also used MIPS implementations during the late
1980s and 1990s. Since MIPS is a RISC computer it employs
less number of transistors and hence decreases the transistor
count. Pipelining is thus heavily employed to make use of ex-
tra available space on the chip to improve code execution per-
formance. MIPS was defined to be a 32-bit architecture called
MIPS32. Later Revisions of this architecture is 64 bit in size
and hence called MIPS64. [1]

2 MIPS 16 INSTRUCTION SET DESCRIPTION
2.1 Motivation
Small-scale applications do not require that much of compu-
ting power. This paper proposes a reduced version of MIPS
instruction set for such small-scale applications. This ISA will
be called MIPS 16. The main aim of this ISA is to reduce the
transistor count of a MIPS processing unit by scaling down the
bus and register width and providing less but enough number
of instructions for small-scale applications. The implementa-
tion of such an instruction set would take up less real estate on
the chip (or FPGA) and will allow more peripherals to be fab-
ricated on a single chip making it ideal for a System-On-Chip
(SOC) implementation of an application. It will also be benef-

icial in embedded system design where a custom processor
core implementation is required with tight instruction re-
quirements so that it takes less space on a FPGA.

2.2 Instruction Set Specification [3]
MIPS instructions have fixed width. The original MIPS 32 ISA
has 32 bits wide instructions. Each instruction in MIPS16 is 16
bits wide. Further, MIPS16 has 8 internal registers as opposed
to the 32 registers of MIPS32. As the name suggests, data bus
is 16 bits wide and address bus is preferably 16 bits wide too.
I/O support is memory mapped. Memory is accessed by
LOAD and STORE instructions. The instructions follow an
<operand register, register, register> format.

The Instructions can be divided into 4 groups:
1. Arithmetic: Basic computational instructions add and

subtract.

2. Logical: Operations like AND, OR, EXOR

3. Data Transfer: Load and Store operations

4. Branch and control: Jump, Call, and Return, etc.The
ISA supports direct and immediate addressing modes.

2.3 Instruction Word Format
A MIPS16 instruction is 16 bits wide. Since MIPS uses a Regis-
ter-Register type of instruction a general instruction specifies
two source registers and a destination registers. The format of
such an instruction will be

ADD Rs1, Rs2, Rd
Rs1 = First source operand register
Rs2 = Second Source operand register
Rd = Destination register

The instruction word has a 5-bit op-code specifying the op-

eration to be performed. Number of operands may be variable
e.g. ADD requires three operands while NOT requires only
two. Format of a three-operand instruction word is shown in
Table I

M

————————————————
• Nirmal Haldikar is currently pursuing a post graduate diploma

(VLSI Design) from Centre for Development Of Advanced Com-
puting, Pune and has a Bachelor in Engineering degree(Elec-
tronics) from Datta Meghe College Of Engineering Mum-
bai.Email:nirmalh91@gmail.com

• Sooraj Sekhar is currently pursuing a post graduate diploma (VLSI
Design) from Centre for Development Of Advanced Computing, Pu-
ne and has a Bachelor in Technology degree (Electronics and Com-
munication) from Lovely Professional University, Jalan-
dhar.Email:soorajsekhar31@gmail.com

2300

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 4, Issue 12, December-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

In case of ALU instructions, the 2 reserved bits act as func-
tion bits where they are used to distinguish between ver-
sions of a common instruction. For instance, the instructions
ADD and ADC have the same opcode but different function
bits. This results in simpler control logic as the reserved bits
are decoded directly by the ALU control logic.

In case of lesser operands appropriate operand is given a
constant value. E.g. NOT instruction requires only one
source and one destination operand. Therefore, Rs2 field
will be made “000” as shown in Table 2. Likewise a POP in-
struction will require only destination and hence both the
source operands will be constant and only destination

needs to be provided as shown in Table 3.

The unused fields in an instruction are also used to provide

immediate input. The size of the immediate field depends on
the number of operands instruction uses.

ADDI Rs, Rd, #10
Rs = Source Register
Rd = Destination register
#10 = Immediate value (0-31 in decimal)

Instructions like the move immediate (MVIH / MVIL)

require an 8-bit value to be specified within the instruction. In
such a case, the 8-bit value is split into 2 parts. The higher 3
bits are specified in place of the Rs1 operand and the next low-

er 5 bits are specified in the lower 5 bits of the instruction.

Jump instructions have two modes viz. PC relative and ab-

solute modes. In PC relative mode. The lower 5 bits of the in-
struction are used to specify a 5 bit signed value as shown in
Table IV. This value is added/subtracted to the PC to get the
jump address. The PC relative mode is used for conditional
jump instructions. The absolute mode is used for uncondition-
al jumps and jump-&-link instructions. In these instructions
the all bits other than the opcode are used to specify an 11 bit
signed PC offset value.

The instruction set is so designed so as to simplify the in-

struction decoding logic and the control logic.

2.4 Comparison between MIPS -16 and MIPS-32 [7]
MIPS-16 can be considered to be a derivative of MIPS-32 in-
struction set. But the philosophies behind their design are dif-
ferent. MIPS-16 provides more flexibility in terms of optimiz-
ing the design by keeping only the required instructions.
MIPS-16 is designed for small-scale applications while MIPS-
32 is a high performance 32-bit architecture, which can handle
large data and perform fast calculations by employing multi-
ple pipelines and multiple registers at the cost of larger chip
area and complicated logic design.

Some key differences have been highlighted in TABLE 7

TABLE 1
THREE OPERAND INSTRUCTION

TABLE 5
MOVE IMMEDIATE INSTRUCTION

TABLE 2
TWO OPERAND INSTRUCTION

NOT Rs, Rd

TABLE 4
 IMMEDIATE INSTRUCTION

TABLE 6
JUMP (ABSOLUTE MODE) INSTRUCTION

TABLE 3
ONE OPERAND INSTRUCTION

POP Rd
TABLE 7

COMPARISON OF MIPS-16 AND MIPS-32 ISA

2301

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 4, Issue 12, December-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2.5 List of Instructions
As the op-code has a 5-bit length there are 32 possible dis-

tinct instructions. If the reserved bits at the end of the instruc-
tion are utilized for grouping 2 or more similar instructions
more op-codes can be incorporated in the instruction set e.g.
ADD and ADC can be grouped together as they perform simi-
lar function with the difference being inclusion of carry into
the sum. A complete list of 37 instructions has been provided
in Table 8 with a short description of each instruction.

TABLE 7 (CONTINUED)
COMPARISON OF MIPS-16 AND MIPS-32 ISA

TABLE 8
MIPS-16 INSTRUCTION SET

2302

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 4, Issue 12, December-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2.6 Implementation Strategies
The implementation strategies that can be employed will

depend on the application. Some of the design considerations
are listed below:

1. Single-Cycle or Multi-cycle implementation: [3],
[4],[5]
Implementation can use a single cycle or a multi
cycle control system for its data path.
A single cycle control system performs all the elemen-
tary data path operations in a single cycle. This gen-
erally requires dedicated hardware for every phase of
instruction fetching, decoding and execution. It is
faster at the cost of larger chip area.

A multi cycle implementation divides the exe-
cution of an instruction into well-defined time
states. The execution happens in a timely order and
might require different number of time states for
different instruction. The main advantage is the
hardware can be shared for similar elementary func-
tions in different time states. Multi cycle should be
preferred for applications with smaller chip area re-
quirements.

2. Pipelining Requirement:[6]

Pipelining provides performance enhancement by
concurrent execution of more than one pair able in-
structions. The design involves use of multiple data
paths and logic to check for pair ability and hazard
removal that occurs due to concurrent execution.
This significantly complicates the design and takes
a larger chip area. But the performance improve-
ment would be tremendous.

3 CONCLUSION
MIPS-16 is thus a low-cost, compact and hence in effect a low
power RISC instruction set architecture as compared to the
MIPS-32 architecture. Its compact size and flexibility makes it
ideal for an optimized implementation of an embedded sys-
tem. It provides all the basic instruction and functionality for a
small-scale embedded system not involving heavy arithmetic
calculations. MIPS-16 can be implemented on FPGA by an
appropriate strategy as per the application's requirement. Sin-
gle cycle design should be used for better performance while
multi cycle design should be preferred for compactness. Pipe-
lining can further improve the system performance.

ACKNOWLEDGMENTS
It gives us immense pleasure to thank Prof Parikshit Godbole,
who always motivated us. He was kind enough to help us
with our doubts and was a source of inspiration for this pro-
ject.

REFERENCES
[1] http://en.wikipedia.org/wiki/MIPS_architecture.
[2] http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm

[3] David A. Patterson and John L. Hennessy, Computer Organization
and Design, 3rd Ed.

[4] Lecture notes by Howard Huang, University of Illinois at Urbana-
Champaign. [Online]. Available:
http://www.howardhuang.us/teaching/cs232/11-Single-cycle-
MIPS- processor.pdf

[5] Lecture notes by Howard Huang, University of Illinois at Urbana-
Champaign. [Online]. Available:
http://www.howardhuang.us/teaching/cs232/12-Multicycle-
datapath.pdf

[6] Lecture notes by Howard Huang, University of Illinois at Urbana-
Champaign. [Online]. Available:
http://www.howardhuang.us/teaching/cs232/15-Pipelining.pdf

[7] MIPS Official Website. Available:
http://www.mips.com/products/architectures/mips
32/

2303

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/MIPS_architecture
http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm
http://www.uiuc.edu/
http://www.uiuc.edu/
http://www.uiuc.edu/
http://www.howardhuang.us/teaching/cs232/11-Single-cycle-MIPS-processor.pdf
http://www.howardhuang.us/teaching/cs232/11-Single-cycle-MIPS-processor.pdf
http://www.howardhuang.us/teaching/cs232/11-Single-cycle-MIPS-processor.pdf
http://www.howardhuang.us/teaching/cs232/11-Single-cycle-MIPS-processor.pdf
http://www.uiuc.edu/
http://www.uiuc.edu/
http://www.uiuc.edu/
http://www.howardhuang.us/teaching/cs232/12-Multicycle-datapath.pdf
http://www.howardhuang.us/teaching/cs232/12-Multicycle-datapath.pdf
http://www.howardhuang.us/teaching/cs232/12-Multicycle-datapath.pdf
http://www.howardhuang.us/teaching/cs232/12-Multicycle-datapath.pdf
http://www.uiuc.edu/
http://www.uiuc.edu/
http://www.uiuc.edu/
http://www.howardhuang.us/teaching/cs232/15-Pipelining.pdf
http://www.howardhuang.us/teaching/cs232/15-Pipelining.pdf
http://www.mips.com/products/architectures/mips32/
http://www.mips.com/products/architectures/mips32/
http://www.mips.com/products/architectures/mips32/

	1 Introduction
	2 MIPS 16 Instruction set description
	2.1 Motivation
	2.2 Instruction Set Specification [3]
	2.3 Instruction Word Format
	2.4 Comparison between MIPS -16 and MIPS-32 [7]
	2.5 List of Instructions
	2.6 Implementation Strategies

	3 conclusion
	acknowledgments
	References

